jueves, 13 de julio de 2017

Teoria de Conjuntos



TEORIA DE CONJUNTOS

La teoría de conjuntos es una rama de las matemáticas que estudia las propiedades y relaciones de los conjuntos: colecciones abstractas de objetos, consideradas como objetos en sí mismas. Los conjuntos y sus operaciones más elementales son una herramienta básica en la formulación de cualquier teoría matemática.
La teoría de conjuntos más elemental es una de las herramientas básicas del lenguaje matemático. Dados unos elementos, unos objetos matemáticos como números o polígonos por ejemplo, puede imaginarse una colección determinada de estos objetos, un conjunto. Cada uno de estos elementos pertenece al conjunto, y esta noción de pertenencia es la relación relativa a conjuntos más básica. Los propios conjuntos pueden imaginarse a su vez como elementos de otros conjuntos. La pertenencia de un elemento a a un conjunto Ase indica como a  A.
Una relación entre conjuntos derivada de la relación de pertenencia es la relación de inclusión. Una su colección de elementos B de un conjunto dado A es un subconjunto de A, y se indica como B  A.
Ejemplos.
Los conjuntos numéricos usuales en matemáticas son: el conjunto de los números naturales N, el de los números enteros Z, el de los números racionales Q, el de los números R y el de los números complejos C. Cada uno es subconjunto del siguiente:
N c Z c Q c R c C
El espacio tridimensional E3 es un conjunto de objetos elementales denominados puntos p, p  E3. Las rectas r y planos α son conjuntos de puntos a su vez, y en particular son subconjuntos de E3, r  E3 y α  E3.


Existen unas operaciones básicas que permiten manipular los conjuntos y sus elementos, similares a las operaciones aritméticas, constituyendo el álgebra de conjuntos:
Unión. La unión de dos conjuntos A y B es el conjunto A  B que contiene cada elemento que está por lo menos en uno de ellos.
Intersección. La intersección de dos conjuntos A y B es el conjunto A ∩ B que contiene todos los elementos comunes de A y B.
Diferencia. La diferencia entre dos conjuntos A y B es el conjunto A \ B que contiene todos los elementos de A que no pertenecen a B.
Complemento. El complemento de un conjunto A es el conjunto A que contiene todos los elementos (respecto de algún conjunto referencial) que no pertenecen a A.
Diferencia simétrica La diferencia simétrica de dos conjuntos A y B es el conjunto A Δ B con todos los elementos que pertenecen, o bien a A, o bien a B, pero no a ambos a la vez.
Producto cartesiano. El producto cartesiano de dos conjuntos A y B es el conjunto A × B que contiene todos los pares ordenados (a, b) cuyo primer elemento a pertenecer a A y su segundo elemento b pertenece a B.


No hay comentarios:

Publicar un comentario